基于沙地指数模型的沙地监测方法
沙漠化是干旱、半干旱地区的重要生态环境问题,我国西北地区沙漠化土地分布广泛,加剧的沙漠化问题影响着区域经济和社会的发展,遥感技术的进步为沙漠化评估与制图提供了重要手段.本文以内蒙古自治区浑善达克沙地为研究区,基于面向对象方法,对研究区Landsat8 OLI影像进行沙地最优尺度分割.以分割对象为基础,实验在冬夏季影像上分层分阶段提取沙地.在冬季影像上,本文提出新比值型指数RSBI(Ratio Soil Brightness Index)对沙地进行提取,精度较SBI指数提高4.11%.后基于改进型植被覆盖度指数(FMSAVI)与反照率(Albedo)构建二维特征空间,建立沙地分类指数模型(DCI),对夏季影像沙区分类.该方法总体精度为83.24%,较NDVI-Albedo二维特征空间模型精度提高5.59%,较FMSAVI模型提高16.20%.本文结合RSBI指数与FMSAVI-Albedo特征空间反演的DCI指数模型来提取沙地信息并对沙地分类,减少了沙地提取误差,提高了分类精度,为沙地信息的研究提供了新思路.
面向对象、沙化土地、沙化指数、特征空间、分类模型、NDVI、MSAVI、Albedo
23
X831;S157;U456.3
国家重点研发计划2016YFC0500806
2021-05-26(万方平台首次上网日期,不代表论文的发表时间)
共12页
680-691