政府严控期我国地级市COVID-19疫情的时空集聚、演变及自相关效应研究
突发性重大公共传染性疫情在地级城市层面政府严格防控时期的时空演变特征能够有效反应我国综合应急防控能力.基于中国2020年1月24日-3月5日312个城市的COVID-19累计确诊数、现有确诊数、治愈数等统计数据,采用ESDA、优化的热点分析、空间马尔科夫链、空间面板数据模型等方法分析了政府严控期COVID-19疫情在312个城市的时空变化特征.研究发现:①全国COVID-19现存确诊数经历了"快速增长扩散、基本控制、逐渐下降、局部地区完全控制"的变化特征并在2月17日达到峰值,上升期的日均增长率为17.5%,下降期的日均下降率为5.1%,绝大部分城市的疫情变化特征与全国总体情况类似;②春运期间的人口流动性高是导致疫情快速扩张的主要原因,武汉"封城"之前14 d的百度迁徙强度指数与部分城市的累计确诊数显著相关;③优化的热点分析方法识别出疫情热点的空间分布具有固定性且主要分布于以武汉为中心、半径约350 km范围内的36个城市,未识别出具有统计显著性的疫情冷点城市;④对各城市现有确诊人数的马尔科夫链转移概率矩阵分析结果显示,各种类型维持现状的概率大于0.85,向下转移的平均概率明显高于向上转移的概率,在不同空间滞后类型的影响下各类型转移概率发生明显变化;⑤空间面板数据模型估计结果显示312个城市的现存确诊数具有显著的空间和时间自相关性.本研究从地级市层面多角度分析了政府严控期间COVID-19疫情的时空变化特征,疫情防控重点在于降低其时空自相关效应,为我国当前及未来应对突发性重大公共传染性疫情提供决策参考.
COVID-19疫情、政府严控期、疫情热点、迁徙规模指数、时空演变、时空自相关、空间马尔科夫链模型
23
F426.4;K901;F570
国家社会科学基金;国家自然科学基金
2021-03-31(万方平台首次上网日期,不代表论文的发表时间)
共13页
246-258