基于时间序列聚类方法分析北京出租车出行量的时空特征
受城市资源配置、区域功能分化的影响,城市中居民的出行往往呈现出特定的模式和规律,而这种出行模式的背后反映出城市的功能结构。城市车辆GPS导航的广泛使用,以及车辆轨迹数据的大量获取,为分析城市居民出行模式及理解城市功能结构提供了数据支撑。本文以道路分割城市得到的地块为研究单元,利用北京市一个月的出租车轨迹数据,对北京居民的出行模式及城市功能格局进行分析。在轨迹数据分析中,本文从轨迹数据中提取每个地块的出行量时间序列信息,然后采用结合时间序列距离度量和时间序列自身相关性的聚类方法,对出行量时间序列数据进行聚类分析,从而研究乘客出行的时空分布特征,最后结合北京市POI数据,探讨了不同区域乘客出行规律和区域功能类型的相互关系。结果表明,出租车出行量时间序列模式在工作日和周末间存在明显差异。此外,工作日的2个出行高峰与通常的通勤早晚高峰不同。由出行量所得的区域聚类结构,除具有重要交通枢纽功能的地块外,总体上以市中心为圆心大致呈同心圆分布,且距离市中心越远出行量越小。研究结果对于分析北京市居民出行行为、辅助城市交通规划具有一定的意义。
轨迹数据、时空特征、城市功能结构、出行模式、时间序列聚类
18
TP3;TP1
国家自然科学基金项目41271385、41271386。
2016-10-14(万方平台首次上网日期,不代表论文的发表时间)
共13页
1227-1239