基于循环神经网络的大地电磁信号噪声压制研究
由于天然电磁场源信号微弱,观测数据极易受到噪声干扰,严重影响反演和解释结果.传统去噪方法依赖于人工对时间序列和功率谱的筛选,去噪效率低,主观性强.本文提出利用循环神经网络对大地电磁时域信号进行特征噪声的识别和提取,进而重构出去噪后的大地电磁信号.在对大地电磁时域信号进行大量分析的基础上,对噪声进行分类并搭建含噪信号数据库,利用该数据库训练了两个循环神经网络,并选取长短时记忆单元优化循环神经网络结构,分别实现含噪数据段筛选和噪声形态提取.对仿真和实测数据分别进行了测试,循环神经网络均能准确筛选出大地电磁信号中的噪声段,本方法在避免人为操作主观性的同时提高了工作效率,视电阻率和相位曲线质量得到明显改善.
大地电磁、循环神经网络、强干扰、去噪、机器学习
66
P631
重点研发计划;重点研发计划;国家自然科学基金
2023-10-18(万方平台首次上网日期,不代表论文的发表时间)
共15页
4317-4331