期刊专题

10.6038/cjg2022P0403

基于深度学习的位场边界识别方法

引用
边界识别是位场数据处理中极为重要的一种技术,现有的边界识别方法属于无监督式机器运算,其识别精度与地质体的空间分布存在很大关系,尤其是对深部复杂异常体的识别存在边界模糊的特点.为了进一步提高边界识别的精度,受深度学习卓越非线性映射能力和监督式学习优点的启发,本文提出了基于深度学习的位场边界识别方法,深度学习网络结构是一种融合了多尺度特征和全局注意力机制的密集跳跃连接网络(PFD-Net).该网络结构首先以改进的U-net为骨干网络获取位场边界特征信息,然后在嵌套的标准卷积模块之间进行密集跳跃连接来缩减编码阶段到解码阶段的语义鸿沟,以及减少训练阶段梯度消失等问题,随后再采用全局注意力机制模块将多尺度的高低层特征信息进行融合,以此进一步加强边界的全局及细节定位.模型试验表明,PFD-Net网络能够准确识别出异常体的边界信息,且对于含噪声数据,其预测结果的质量不会降低,该网络表现出较强的泛化性和鲁棒性.最后将本文方法应用于藏东南某铁路隧道西段的航空磁测数据,取得了良好的边界识别结果并能够获得更多的构造信息.

位场边界识别、多尺度、注意力机制、密集跳跃连接

65

P631

四川省科技厅计划项目;中央高校基本科研业务费;中央高校基本科研业务费;西藏自治区科技计划项目;国家重点研发计划;中国中铁股份有限公司科技研究开发计划项目

2022-05-16(万方平台首次上网日期,不代表论文的发表时间)

共17页

1785-1801

暂无封面信息
查看本期封面目录

地球物理学报

0001-5733

11-2074/P

65

2022,65(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn