基于数据增广训练的深度神经网络方法压制地震多次波
地震数据中存在的多次波影响偏移成像,误导地震资料的解释,因此通常视为相干噪声而被去除.为了对多次波进行智能化衰减,本文提出了一种基于数据增广训练的使用深度神经网络的多次波压制方法.设计的深度神经网络包括卷积编码和卷积解码过程,其中卷积编码过程学习全波场数据中的一次波特征,卷积解码过程利用这些特征来重构一次波并压制多次波和随机噪声.在训练阶段,旋转训练集并在输入数据中加入随机噪声构成增广训练数据集来提升神经网络的抗噪稳定性和泛化性,通过迁移学习让深度神经网络具备跨工区压制多次波的能力.简单模型与Sigsbee2B模型三套模拟数据的实例验证了本文方法在一次波重构和多次波压制中的有效性、稳定性和良好泛化性;一套崎岖海底模型地震物理模拟数据的应用实例表明本文方法具有应用于复杂条件下压制地震多次波的能力.
深度神经网络;数据增广训练;多次波压制;迁移学习
64
P631
国家重点研发计划;国家自然科学基金;国家重点基础研究发展计划
2021-11-22(万方平台首次上网日期,不代表论文的发表时间)
共19页
4196-4214