三维波动方程时空域混合网格有限差分数值模拟方法
常规高阶和时空域高阶有限差分方法广泛应用于三维标量波动方程的数值模拟,这两种差分方法仅利用笛卡尔坐标系中的坐标轴网格点构建三维Laplace差分算子,相应的差分离散波动方程本质上仅具有2阶差分精度,模拟精度低.本文将三维笛卡尔坐标系中非坐标轴网格点分为两类:坐标平面内的非坐标轴网格点和坐标平面外的非坐标轴网格点,系统推导出了两类非坐标轴网格点构建三维Laplace差分算子的方法,进而提出了一种利用坐标轴网格点和非坐标轴网格点共同构建三维Laplace差分算子的混合网格有限差分方法,并利用时空域频散关系和泰勒展开建立差分系数方程,推导出了差分系数的通解.相比常规高阶和时空域高阶差分格式的2阶差分精度,时空域混合网格差分离散波动方程理论上能够达到任意偶数阶差分精度,模拟精度显著提高,同时稳定性更强.频散分析表明:相比常规高阶和时空域高阶差分格式,在计算效率基本相同时,时空域混合网格差分格式能更有效地减小数值频散,减弱数值各向异性,模拟精度更高;在模拟精度基本相当时,混合网格差分格式能采用更大的时间采样间隔,计算效率更高.数值模拟实例进一步验证了混合网格差分格式在提高模拟精度和计算效率方面的先进性,也验证了其普遍适用性.
差分格式;混合网格;差分系数算法;数值频散;三维Laplace差分算子
64
P631
国家重点研发项目"面向E级计算的能源勘探高性能应用软件系统与示范";国家科技重大专项"下古生界-前寒武系地球物理勘探关键技术研究"
2021-08-23(万方平台首次上网日期,不代表论文的发表时间)
共20页
2809-2828