基于遗传神经网络的大地电磁反演
为进一步提高大地电磁非线性反演的稳定性、运算效率及准确度,将遗传神经网络算法引入大地电磁反演.首先针对大地电磁二维地电模型建立BP(Back Propagation)神经网络基本框架进行学习训练,网络输入为已知地电模型的视电阻率参数,输出为该地电模型参数;再利用遗传算法对神经网络学习训练过程进行优化,计算出多种地电模型网络连接权值和阈值的最优解;最后将最优连接权值和阈值对未知模型进行反演测试,网络输入为未知地电模型的视电阻率参数,输出为该地电模型参数.模型实验表明:遗传神经网络算法充分结合了遗传算法的全局寻优性和神经网络的局部寻优性,相比单一神经网络算法,在网络学习训练中提高了解的收敛成功率和计算速度,在反演测试中能更准确地逼近真实模型.将遗传神经网络算法与最小二乘正则化反演进行对比,理论模型和实测数据都验证了遗传神经网络算法在大地电磁反演中的可行性和有效性.
大地电磁、反演、遗传算法、神经网络
61
P631
国家自然科学基金41304090;国家重点研发计划课题2016YFC0303104
2018-07-11(万方平台首次上网日期,不代表论文的发表时间)
共13页
1563-1575