位场向下延拓的最小曲率方法
针对位场向下延拓的不适定性,我们将位场向下延拓视为向上延拓的反问题,提出以位场最小曲率作为约束条件来求解稳定的下延位场.我们将剖面位场向上延拓表达式用傅里叶矩阵的形式表示,以矩阵乘法形式给出延拓的表达式,同时向待反演的下延位场引入最小曲率约束,得到向下延拓的最小曲率解,并利用正交变换给出了更为简洁的频率域解.随后,利用Kronecker积将上述全部结果拓展至三维位场,给出了三维位场向下延拓的最小曲率解.此外,我们将位场数据的填充、扩充问题与向下延拓问题统筹考虑,提出一种新的向下延拓迭代格式,该算法面向实际资料处理需求、无须预扩充或填补数据.下延迭代时,对原始数据直接向下延拓,而空白部分利用上一次下延位场估计的上延值替代其空白值并对其向下延拓,直至获得最小曲率约束下稳定的向下延拓结果.同时,我们也讨论了利用改进L曲线和广义交叉验证(GCV)计算正则参数最优估计的问题.对理论模型和实际航空重力资料进行了向下延拓检验,处理结果表明位场向下延拓的最小曲率方法解能满足实际位场资料对向下延拓处理的需求,具有较高的下延精度.
向下延拓、最小曲率、位场、数据空白、正则化
59
P631
国家自然科学基金61174206、国家高技术研究发展计划863计划2011AA060501,2013AA063901,2013AA063905和中国地质调查1212011120189项目资助.
2016-05-24(万方平台首次上网日期,不代表论文的发表时间)
240-251