基于李代数积分的薄层多重散射消除技术
目前消除薄层多重散射的影响主要采取Q值补偿和Levinson算法的预测反褶积.Q值补偿经常存在不稳定问题,且会加强高频噪音;Levinson算法的预测反褶积受阶数限制,层数多时不稳定,且容易伤害有效波.本文采用基于李代数积分的薄层反射系数Picard迭代反演技术来消除这种地层滤波效应.本文将微分方程e指数解方法用于预测算子方程,提出一种称为李代数积分的新方法,给出了预测算子和地层反射系数序列的关系式,普通O'Doherty-Anstey公式为该关系式的一阶李代数表达,高阶李代数积分是对一阶李代数积分的修正.同时基于该关系式本文提出了Picard迭代反演算法由预测算子求取地层有效反射波,并分析了不同阶李代数反演效果.模型试验和实际应用说明该算法消除薄层多重散射的可行性和可靠性.依托李代数积分本身的优点,该算法快速、稳定、收敛.
地层滤波、多重散射、李代数积分、预测算子
56
P631
国家自然科学基金项目40830424;国家科技重大专项子课题2011ZX05023-005-002;国家青年科学基金项目41104077
2013-09-18(万方平台首次上网日期,不代表论文的发表时间)
共10页
2437-2446