期刊专题

基于图神经网络的会话型服务推荐

引用
随着互联网信息资源的爆炸式增长,"信息过载"问题日益突出,服务推荐被视为解决"信息过载"问题的一种有效手段.考虑到用户会话中的行为数据一定程度上代表着用户偏好,本文提出了一种新的推荐模型SRGNN,将用户会话中的点击序列抽象为一个有向的会话图,再利用主流的图神经网络对会话图的结构信息进行特征提取,同时使用门限循环神经网络(GRU)提取会话点击序列中的时序信息以及整个会话过程中的兴趣信息,并结合用户会话中最后时刻的兴趣信息为用户进行相关推荐.

图神经网络;会话型服务推荐;用户偏好;门限循环神经网络;信息过载

18

TP311(计算技术、计算机技术)

2022-03-22(万方平台首次上网日期,不代表论文的发表时间)

共3页

88-90

暂无封面信息
查看本期封面目录

电脑知识与技术

1009-3044

34-1205/TP

18

2022,18(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn