基于Inception V3的高校学生课堂行为识别研究
随着人工智能和深度学习在教育领域的交叉融合,行为识别技术为学生课堂行为观察提供了一种有别于传统的新方法.以云南省X高校课堂视频为基础,经过预处理,获得六大类行为(听课、看书、书写、拍照、低头玩手机、桌面玩手机)30000张图像样本,运用Inception V3算法模型进行了研究,实验结果:六大类行为总识别率达到88.10%,但各个行为识别率有所不同,其中"拍照"和"听课"识别率较高.通过进一步的混淆矩阵分析,得到结论:模型对动作姿态单一的行为特征提取效果较好,但模型对手机、笔、课本等重要用具不够重视,不能识别书写动作和眼神角度,导致"看书""书写""低头玩手机"和"桌面玩手机"行为因人体动作姿态相似容易混淆.
Inception V3、深度学习、学生课堂行为、行为识别
17
TP391.41(计算技术、计算机技术)
云南省教育厅科学研究基金项目2019J0203
2021-03-17(万方平台首次上网日期,不代表论文的发表时间)
共4页
13-15,29