期刊专题

基于卷积神经网络的多文本特征问答系统

引用
基于文档的问答系统的研究目标是从给定的文档集合中筛选出某些文档作为用户问题的正确答案,其核心在于计算问题和答案这两个语句的相似度.在该文中,我们研究了各项文本结构特征和文本统计特征:Term Frequency-inverse Document Frequency(TF-IDF)和最长公共子序列(Longest Common Subsequence,LCS),同时我们设计了特定的卷积神经网络(Convolutional Neural Networks,CNN)结构并融合研究的特征,从而得到一种表达能力好的问答对的向量表示.我们提出的模型不依赖于任何外部的语言工具并且能够适用于多个领域和多种语言.实验结果表明,该卷积神经网络模型能够很好的表达文档之间的相似性,而且在加入TF-IDF和LCS特征之后该模型的性能进一步得到提升.我们利用这个模型在NLPCC-2017 Document-Based Question Answering(DBQA)比赛中Mean Average Precision(MAP)值能达到0.6809和Mean Reciprocal Rank(MRR)值达到0.6850.

问答系统、卷积神经网络、TF-IDF、LCS

14

TP311(计算技术、计算机技术)

该文中工作由上海市科委科研计划项目14511108002支持,感谢NLPCC-2017比赛提供的DBQA数据集

2018-04-10(万方平台首次上网日期,不代表论文的发表时间)

共3页

177-178,180

暂无封面信息
查看本期封面目录

电脑知识与技术

1009-3044

34-1205/TP

14

2018,14(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn