期刊专题

基于距离函数的改进k-means算法

引用
聚类算法在自然科学和和社会科学中都有很普遍的应用,而K-means算法是聚类算法中经典的划分方法之一。但如果数据集内相邻的簇之间离散度相差较大,或者是属性分布区间相差较大,则算法的聚类效果十分有限。本文基于离散度的思想,采用新的加权距离函数代替了传统算法的欧氏距离,在一定程度上优化了k-means算法的聚类结果。

聚类、k-means算法、离散度

TP18(自动化基础理论)

2016-04-01(万方平台首次上网日期,不代表论文的发表时间)

共3页

167-169

暂无封面信息
查看本期封面目录

电脑知识与技术

1009-3044

34-1205/TP

2015,(34)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn