基于最少中心节点覆盖的社区发现方法
复杂网络社区发现目前已成为计算机科学、生物学、社会学等多个领域研究热点之一。为快速准确地发现大规模网络中社区结构,该文提出一种基于中心节点覆盖的社区发现算法。算法以拥有最多邻居节点的中心节点开始,依次找到能覆盖整个网络节点的最少中心节点,然后以这些中心节点作为小社区,计算相交小社区间合并度量分值,每次合并两个具有最大合并度量分值的小社区,并以模块性Q值作为全局最优合并序列评价函数,全局最大Q的合并序列,即为最优社区划分结构。实验结果表明,算法对网络社区结构划分的时间复杂度为nlogn(n为网络节点数目)并具有较高准确率。
社区发现、中心节点、社区合并度量
TP311(计算技术、计算机技术)
南京财经大学研究生创新项目M13148
2015-03-25(万方平台首次上网日期,不代表论文的发表时间)
共4页
19-22