期刊专题

基于2DPCA和流形学习LPP算法的人脸特征提取应用

引用
人脸图像的特征提取是人脸识别系统中最关键同时也是难题之一。流形学习算法是近些年的人脸识别和语音识别两个领域应用较多的非线性降维方法。通过对人脸识别系统的研究,现提出一种全新的基于2DPCA(Two-Dimentional PCA)和流形学习LPP(Locality Preserving Projections)算法的特征提取方法,可为今后深入研究人脸识别技术提供较好的参考。仿真实验表明,该算法与传统特征提取PCA、LDA算法相比,可以取得更好的识别率。

流形学习、人脸识别、特征提取、2DPCA算法、LPP算法

TP18(自动化基础理论)

2014-12-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

7438-7441

暂无封面信息
查看本期封面目录

电脑知识与技术

1009-3044

34-1205/TP

2014,(31)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn