基于局部特征约束的压缩感知人脸识别算法研究
人脸识别是计算机模式识别领域中一个研究热点和难点。针对人脸识别中数据量大、高维度、非线性等问题,提出基于局部特征约束的压缩感知人脸识别方法。首先对人脸图像进行选择性约束处理,利用SIFT算法提取人脸图像中的局部特征,以此构成压缩感知算法中的测量矩阵,再利用压缩感知的重构算法计算特征的稀疏表示,在此基础上进行人脸识别。算法在AR人脸库上进行了抗干扰比对测试,实验结果验证了算法对光照、表情以及遮挡等干扰具有强的鲁棒性,局部特征的约束大大降低了特征点的数量,有效提高了人脸识别的正确率。
压缩感知、人脸识别、特征提取、局部特征、SIFT算法
TP391(计算技术、计算机技术)
2014-04-15(万方平台首次上网日期,不代表论文的发表时间)
共5页
1500-1504