基于CT图像的肺实质分割方法
诊断肺癌的重要手段之一是高分辨率CT(High Resolution ComputedTomography,HRCT)扫描,但是医生需要丰富的阅片经验以及大量的精力时间才能阅读海量的CT图像信息。为了减少医生的精力损耗和降低漏诊率,采用计算机辅助检测成为趋势。在肺癌等肺部疾病计算机辅助诊断方法中,最核心的步骤是肺实质的分割。提出一种基于CT图像序列的新的自动肺实质分割方法,综合利用了区域生长及数学形态学开运算等算法,并通过纵向扫描方法精确定位左肺和右肺的粘连部位,从而在肺实质边界的肺结节结节容易被忽略分割及左右肺分离的难题得到了解决。对多组胸部CT序列图像的实验证明,该方法对于肺实质分割非常精确有效。
CT图像、计算机辅助诊断、区域生长、肺实质、扫描定位
TP391(计算技术、计算机技术)
2014-03-29(万方平台首次上网日期,不代表论文的发表时间)
共4页
1093-1095,1118