期刊专题

国画特征提取及SVM分类的应用

引用
为了提高国画检索效率,应用SVM算法对鞍马画、花鸟画、人物画、竹子画和山水画等国画进行分类。首先通过对收集的国画样本进行预处理;其次,利用人眼对颜色的划分特点,把RGB模式图像转化为HSV模式,对其H、S、V分量进行非等间隔量化,组成一维特征向量,同时结合惯性比形成图像颜色特征信息,使用灰度共生矩阵算法获取纹理特征信息;最后,通过对比网格搜索、遗传算法(GA)、粒子群算法(PSO)的参数寻优方法,应用网格搜索法对国画图像进行分类,并对比了BP神经网络和判别分析算法的分类效果,SVM的正确率高达97%以上,试验结果表明SVM在国画分类应用是有效和可行的。

灰度共生矩阵、惯性比、SVM分类、特征提取

TP311(计算技术、计算机技术)

2013-11-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

6398-6401

暂无封面信息
查看本期封面目录

电脑知识与技术

1009-3044

34-1205/TP

2013,(28)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn