国画特征提取及SVM分类的应用
为了提高国画检索效率,应用SVM算法对鞍马画、花鸟画、人物画、竹子画和山水画等国画进行分类。首先通过对收集的国画样本进行预处理;其次,利用人眼对颜色的划分特点,把RGB模式图像转化为HSV模式,对其H、S、V分量进行非等间隔量化,组成一维特征向量,同时结合惯性比形成图像颜色特征信息,使用灰度共生矩阵算法获取纹理特征信息;最后,通过对比网格搜索、遗传算法(GA)、粒子群算法(PSO)的参数寻优方法,应用网格搜索法对国画图像进行分类,并对比了BP神经网络和判别分析算法的分类效果,SVM的正确率高达97%以上,试验结果表明SVM在国画分类应用是有效和可行的。
灰度共生矩阵、惯性比、SVM分类、特征提取
TP311(计算技术、计算机技术)
2013-11-13(万方平台首次上网日期,不代表论文的发表时间)
共4页
6398-6401