期刊专题

10.3969/j.issn.2095-2163.2024.01.001

基于渐进式双重对齐的无源无监督领域自适应方法

引用
无源领域自适应的核心任务是利用无标签的目标域数据,将预训练好的源模型迁移到目标领域.基于深度聚类的方法需要在自监督学习过程中挖掘辅助信息来正则化特征分布对齐,而辅助信息中噪声常常误导该对齐过程;基于伪源域的对抗学习方法进行概率分布对齐,对所构建伪源域质量十分敏感.针对现有方法存在的不足,本文提出了一种基于渐进式双重对齐的无源无监督领域自适应方法,在进行深度聚类的同时,进行域对齐,缓解深度聚类中伪标签的噪声.首先,通过超近邻增强样本生成高质量伪源域,以克服源域不可见的问题;其次,利用对抗学习,实现两个域的概率分布初对齐;最后,引入深度特征相似,进一步强化对齐效果.在两个公开数据集上的实验结果表明了其有效性.

领域自适应、对抗学习、自监督学习、伪源域、深度聚类

14

TP391(计算技术、计算机技术)

国家自然科学基金62206168

2024-01-31(万方平台首次上网日期,不代表论文的发表时间)

共8页

1-7,15

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

14

2024,14(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn