期刊专题

10.3969/j.issn.2095-2163.2023.07.003

HSMOTE-AdaBoost:改进混合边界重采样集成分类算法

引用
处理类不平衡问题时,已有的采样方法存在易受噪声影响和忽略边界样本的问题,尤其是忽略多数类样本的类内差异,位于边界的样本实例非常容易被错分,而这些样本对划分决策边界具有重要作用.将SMOTE过采样和RUS随机欠采样方法结合并进行改进,提出混合边界重采样算法(HSMOTE-AdaBoost).HSMOTE-AdaBoost算法首先对少数类运用SMOTE过采样,提高数据的平衡度;再使用K近邻算法清除噪声和采样方法产生的重叠实例;同时,基于与少数类样本的平均欧氏距离识别并保留边界多数类样本,然后对剩余的数据进行随机欠采样;最后,利用AdaBoost算法的优势,对平衡后的数据集进行多次迭代训练得到最终的分类模型.仿真实验结果表明,与传统的SMOTE-Boost、RUS-Boost、PC-Boost及改进后的算法KSMOTE-AdaBoost相比,该分类模型在不平衡数据集上的所有性能指标 F-measure,G-mean,AUC值分别最高提升了22.97%,13.88%和 10.03%,具有更优的分类效果.

类不平衡、SMOTE过采样、AdaBoost算法、噪声样本、边界样本

13

TP181(自动化基础理论)

国家自然科学基金;上海市系统科学高峰学科建设项目

2023-08-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

7-14

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

13

2023,13(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn