期刊专题

10.3969/j.issn.2095-2163.2023.06.008

基于IAO优化HKELM的空气质量指数预测

引用
为了精准预测空气质量指数(AQI),本文提出一种基于改进天鹰优化器(IAO)混合核极限学习机(HKELM)的空气质量指数预测模型(IAO-HKELM).首先,利用径向基核函数和多项式核函数构造混合核极限学习机模型;其次,针对天鹰优化器(AO)算法易陷入局部极值的问题,引入改进的Tent混沌初始化策略和自适应t分布策略;采用改进后的AO算法对HKELM模型的参数进行优化,并建立IAO-HKELM空气质量指数预测模型;最后,将预测模型应用于实际案例中,并与其他模型的预测结果及误差进行对比.结果表明,本文提出的预测模型精度更高、稳定性更强.

空气质量指数预测、混合核极限学习机、天鹰优化器、自适应t分布

13

X831(环境监测)

上海市科委重点项目18511101600

2023-06-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

50-56,66

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

13

2023,13(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn