期刊专题

10.3969/j.issn.2095-2163.2023.05.033

基于深度残差注意力生成网络的数据增强图像分类

引用
图像分类可能受到许多因素的影响,本文提出用一个深度残差注意力生成网络生成图像数据来进行数据增强,增加图像数据的多样性,从而提高分类的准确率.通过与一些流行的深度学习分类方法做对比实验,实验结果表明本文所提出的方法在分类性能上具有竞争力,在MNIST和cirfar10数据集上分别达到了98.95%和92.68%的分类准确率.

图像分类、残差注意力、生成网络、数据增强

13

TP391.41(计算技术、计算机技术)

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共4页

187-189,196

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

13

2023,13(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn