期刊专题

10.3969/j.issn.2095-2163.2023.05.012

基于VGG卷积神经网络的动物特性识别与优化路径

引用
使用卷积神经网络进行图像识别,可以大大降低图像辨识的成本,在二分类问题中尤其如此.VGG模型是一种相当流行的卷积神经网络,其特性在于以小卷积核和"网络块"替代传统神经网络中的大卷积核与神经网络层,这意味着其深度有所增加,同时具有较强的迁移性与改进潜力.通过测试发现,增加VGG块数的同时,搭配图像增强是可靠的改进手段;而增加epoch有利有弊,对网络进行dropout的成效不太理想.针对于此,实验构建了一个准确度为83.3%的轻量化VGG模型,该模型相较VGG-16而言要轻量化许多,表明根据合理的方向构建轻量化VGG模型用于动物识别是可行的.

动物识别、VGG、卷积神经网络、优化路径

13

TP317.4(计算技术、计算机技术)

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

70-74,81

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

13

2023,13(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn