期刊专题

10.3969/j.issn.2095-2163.2021.11.011

对称不确定性和粒子群的高维特征选择算法

引用
高维数据中存在着成千上万个特征,大量的特征导致问题搜索空间过大,增加了计算代价,影响了数据分类预测的准确性.为了提高特征选择的效率,本文提出了一种对称不确定性和种群降维机制的粒子群特征选择算法,该算法设计了一种基于对称不确定性指标的初始化方法,降低特征选择的计算代价.通过非支配排序的种群降维机制,减少进化过程中冗余特征的影响.在5个公开生物医学的高维数据集上的实验结果表明,该算法能够针对高维数据特征选择问题取得更好的分类精度和更小的最优子集特征个数,并在时间运行方面有一定的优势.

对称不确定性;非支配排序;降维;高维数据;特征选择

11

TP391(计算技术、计算机技术)

2022-01-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

49-53

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn