期刊专题

10.3969/j.issn.2095-2163.2021.11.006

基于改进的PCA-PSO-LSSVM乒乓球下旋球发球轨迹研究

引用
为了对下旋球发球的整体性进行研究,本文通过标记点对乒乓球运动员关键部位和乒乓球拍进行标记,利用三维运动捕捉系统对整个下旋球发球过程进行研究.针对传统算法中的分类模型适应性差、分类精度不足和LSSVM相关参数的选取随机性强等相关问题,提出了将3种算法结合在一起对乒乓球发球规范性分类的新方法.通过分析下旋球发球的影响因素,选取9个特征向量,并对其进行效果测试,最终确定8个特征向量;通过PCA进一步提取特征向量,把提取结果输入到LSSVM中,用PSO算法优化;根据对比其他几种优化算法,建立了改进的PCA-PSO-LSSVM乒乓球下旋球发球规范预测模型.以两男两女运动员各150组三维下旋球发球数据为例,对模型进行训练和预测,为乒乓球下旋球发球规范性分类提供了一种更为有效的预测方法.

三维运动捕捉系统;下旋球发球;预测模型

11

TP181(自动化基础理论)

2022-01-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

21-25

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn