期刊专题

10.3969/j.issn.2095-2163.2021.09.021

基于深度迁移学习的饮食图像识别研究

引用
卷积神经网络(CNN)应用于图像识别具有很大优势,但是需要足够深的网络和大量标签完善的数据集才能发挥其优越性.实际应用中,往往需要应对的是质量差和大小不一的数据集,且受硬件设备限制.为了提高图像识别效率和精度,提出一种基于深度卷积神经网络和迁移学习的识别算法.该算法首先对图像预处理和数据增强,后迁移大样本提取出的特征信息用于CNN特征提取,再接入微调网络对数据集再训练.实验结果显示,本文算法对饮食识别的精度和时间性能均有显著的提高,精确度最高可达98%以上,精度提升最高可达10%以上,时间性能提升幅度最高可达110%.

深度学习;图像识别;卷积神经网络;迁移学习;微调网络;特征提取

11

TP391.4(计算技术、计算机技术)

贵州省科技成果转化项目[2017]4856

2021-11-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

113-118,122

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn