期刊专题

一种RNN-T与BERT相结合的端到端语音识别模型

引用
端到端语音识别模型由于结构简单且容易训练,已成为目前最流行的语音识别模型.然而端到端语音识别模型通常需要大量的语音-文本对进行训练,才能取得较好的识别性能.而在实际应用中收集大量配对数据既费力又昂贵,因此其无法在实际应用中被广泛使用.本文提出一种将RNN-T(Recurrent Neural Network Transducer,RNN-T)模型与BERT(Bidirectional Encoder Representations from Transformers,BERT)模型进行结合的方法来解决上述问题,其通过用BERT模型替换RNN-T中的预测网络部分,并对整个网络进行微调,从而使RNN-T模型能有效利用B ERT模型中的语言学知识,进而提高模型的识别性能.在中文普通话数据集AISHELL-1上的实验结果表明,采用所提出的方法训练后的模型与基线模型相比能获得更好的识别结果.

语音识别、端到端模型、BERT模型

11

TP183(自动化基础理论)

国家重点研发项目2017YFB1002102

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

169-173

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn