基于BP神经网络对汽油辛烷值损失预测模型的构建
汽油燃烧尾气中含有的硫、烯烃等混合物对环境造成了极大的污染,但企业脱硫降烯的过程也会降低代表企业利润的辛烷值含量.通过数据关联或机理建模,可以刻画化工过程与辛烷值含量的关系,为解决传统的数据关联模型中变量相对较少、机理建模对原料的分析要求高、对过程优化的响应不及时等问题,本文利用Matlab软件,基于粒子群优化算法,通过BP神经网络模型对工厂生产过程中收集的数据进行数据挖掘,建立了辛烷值损失预测模型.最后选择了225个数据样本进行了辛烷值损失预测模型的训练,100个样本用于对辛烷值损失模型进行验证.所构建的模型对目标值的预测具有高度拟合性,较好地解决了相关问题.
辛烷值、BP神经网络模型、粒子群优化、损失预测模型
11
TK01(一般性问题)
2021-04-28(万方平台首次上网日期,不代表论文的发表时间)
共4页
76-79