期刊专题

基于升降编解码全卷积神经网络语音增强技术

引用
步兵战车强噪声背景下由于强背景噪声的存在,既影响了口令识别的正确率,又降低了指挥所后台监听的清晰度,为了提高语音质量,本文对口令数据进行增强处理.为此,本文提出了一种基于升降编解码全卷积神经网络(Increase De-crease Encoder Decode Convolution Neural Network,IDEDCNN)的语音增强算法,该算法将输入语音信号通过预处理,获取其傅里叶幅度谱特征,并将连续8帧的语音信号作为网络的输入,通过编码器来对相邻多帧语音信号建模以提取上下文信息,利用解码器挖掘当前待增强语音帧和上下文信息之间的联系,从而实现语音增强的目的.通过实验证明了该算法能够实现较好的语音增强效果.

噪声估计、语音增强、全卷积神经网络

11

TP183(自动化基础理论)

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

19-22

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn