期刊专题

无监督神经机器翻译综述

引用
神经机器翻译模型的学习往往依赖于大规模的平行语料,然而并不是所有语言对都有充足的平行语料.为了解决神经机器翻译中平行语料缺失的问题,研究人员提出了无监督神经机器翻译,通过无监督预训练策略、去噪自编码器、反向翻译和共享潜在表示机制仅依赖于单语语料对翻译任务进行建模.本文从模型主要机制、训练过程出发来分析无监督神经机器翻译,并介绍无监督神经机器翻译现阶段的发展以及存在的挑战.

无监督神经机器翻译、去噪自编码器、反向翻译

11

TP391;TH166(计算技术、计算机技术)

国家重点研发计划项目2017YFB1002102

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

11

2021,11(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn