期刊专题

10.3969/j.issn.2095-2163.2020.06.015

机器学习在购买意图方面的应用

引用
顾客是否成功购买商品,不仅与商品本身有关,而且与顾客所处区域、类型和特殊节日有关.互联网时代,各大购物网站都有海量的顾客购买信息,因此可以通过顾客对网站的使用和操作信息,使用机器学习算法来预测顾客购买此类商品的意向.本文使用随机森林算法、SVM算法和朴素贝叶斯算法建立模型,并采用五折交叉验证的方法选出这3个可靠的模型,预测顾客在线购买的可能性,最终通过准确率、召回率、F1值、AUC对模型进行评估.实验结果表明:随机森林更适合于在线购买意图的预测.

在线购买意图、随机森林、SVM、朴素贝叶斯、五折交叉验证

10

T181;F724.6

2020-11-12(万方平台首次上网日期,不代表论文的发表时间)

共3页

66-67,73

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

10

2020,10(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn