期刊专题

10.3969/j.issn.2095-2163.2019.02.005

基于BiLSTM神经网络的特征融合短文本分类算法

引用
由于短文本自身具有词汇个数少且格式不规范的特点,造成神经网络输入矩阵存在特征稀疏、维度过高以及语义特征提取不充分等问题.为解决上述问题,提出一种基于双向长短时记忆神经网络的短文本分类算法(WTL-BiLSTM),该算法融合Word2vec、TF-IDF和LDA主题模型实现文本向量化,在获取短文本词义特征的同时,加入词汇重要程度特征和文本主题特征.并利用BiLSTM从前、后两个方向全面捕捉短文本语义特征,有效避免了RNN模型梯度爆炸和梯度消失问题.经实验验证,该算法能够有效解决短文本分类过程中出现的问题,相比于传统的短文本分类算法,分类准确率得到一定程度的提升.

BiLSTM、Word2vec模型、短文本分类

9

TP391.1(计算技术、计算机技术)

2019-03-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

21-27

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

9

2019,9(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn