10.3969/j.issn.2095-2163.2019.01.031
基于ARIMA和卡尔曼滤波的在线Web服务QoS预测方法
随着Web服务使用的广泛,人们普遍发现,Web服务的服务质量(Quality-of-Service,QoS)受网络环境、服务端负载等诸多因素影响不断变化,而保证服务使用过程中的QoS也成为许多Web服务使用者的普遍要求.如何更好地帮助服务使用者选择未来一段时间内符合其服务质量要求的Web服务,同时也帮助服务提供者避免服务质量的违规,是服务计算领域近年来的热点问题.由于ARIMA(Autoregressive Integrated Moving Average Model)模型参数简单并能较好地预测QoS违规,已经在Web服务的QoS预测领域获得了广泛的应用.但是单纯地使用ARIMA模型不能够适应Web服务QoS数据的波动频繁、包含噪声等复杂特点.为了达到更加准确的预测效果,本文提出了一种基于时间序列分析的Web服务QoS预测方法,该方法结合了ARIMA模型与卡尔曼滤波,对服务质量的波动反馈灵敏,较单一的预测模型能够有更准确的预测效果.
Web服务、服务质量(QoS)、预测、ARIMA、卡尔曼滤波
9
TP393.09(计算技术、计算机技术)
2019-02-27(万方平台首次上网日期,不代表论文的发表时间)
共5页
135-138,142