期刊专题

10.3969/j.issn.2095-2163.2017.01.020

基于双向循环神经网络的评价对象抽取研究

引用
评价对象抽取的研究难点在于如何精确地表示大范围的上下文信息.本文针对微博观点句,采用了基于双向循环神经网络(BRNN)的方法来抽取评价对象并对评价对象的情感倾向进行判定.BRNN的隐藏层对上下文进行了抽象,如果经过良好地训练,就能在循环处理句子时有效地表示远距离的有序上下文信息,而无需对上下文窗口长度进行限定.本文选择了词、词性、依存句法树以及产品词典等特征构建了BRNN模型.通过实验发现,上述4种特征组合获得了最优实验结果,通过与CRF模型的对比,本文提出的方法在相互覆盖模式下F值比CRF模型高出0.61%,验证了本文方法的有效性.本文方法在COAE2015任务3的资源受限评测任务中,获得了最好结果.

情感分析、评价对象抽取、双向循环神经网络模型、条件随机场模型

7

TP391(计算技术、计算机技术)

国家自然科学基金61402134;中央高校基本科研业务费专项资金资助HIT.NSRIF.2015068

2017-05-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

71-75

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

7

2017,7(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn