期刊专题

10.3969/j.issn.2095-2163.2017.01.005

基于深度学习的算法知识实体识别与发现

引用
随着互联网技术的快速发展,人类已经习惯于从网络上获取知识,然而伴随着网络资源爆炸式增长,网络资源内容多样,人们使用浏览器获取知识的方法却停滞不前,因此需要一种工具来帮助人们从网络中高效地获取和发现新知识.由于网络资源文本并不是完全结构化的数据,还包括一些自由文本等复杂的无结构数据,这种文本信息虽然方便人们自由表达概念以及事件等,但是同时也为机器搜索、统计分析等制造了障碍.因此,为了在文本上更方便地进行知识分析和挖掘,本文提出一种基于深度学习的算法知识实体识别与发现的方法,应用于算法知识领域来解决上述问题.通过创建算法知识专家库[1],训练词向量,建立深度神经网络模型,从算法知识文本中识别和发现算法知识名称.实验结果表明,该深度神经网络模型识别算法知识的准确率高达98%,并有效发现了专家库以外的新知识点,实现了预期实验需求.

知识实体、命名实体识别、深度学习、知识发现

7

TP391(计算技术、计算机技术)

2017-05-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

17-21

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

7

2017,7(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn