期刊专题

10.3969/j.issn.2095-2163.2012.01.020

基于神经元网络的选择型问卷识别技术

引用
在问卷调查数据自动识别和统计过程中,由于纸张的折叠、弯曲、变形及受污染等原因引起的数据误判时有发生,考虑到手工统计的繁杂性,开发一种自动、高效的智能处理系统具有相当大的实用价值.提出应用神经网络对调查问卷扫描图像进行识别处理的方法,建立基于MATLAB的Hopfield网络识别模型,并详细讨论了图像预处理、特征提取及Hopfield网络训练与识别这三个重要环节.针对建立好的识别模型,系统仿真情况下,符号识别率达到100%;在实际操作过程中,当训练样本数充足,样本来源可靠的情况下,识别率高达96%,基本实现预期效果.

Hopfield网络、图像预处理、特征提取、相关匹配、识别率

2

TP391(计算技术、计算机技术)

2012-06-27(万方平台首次上网日期,不代表论文的发表时间)

共4页

62-65

暂无封面信息
查看本期封面目录

智能计算机与应用

2095-2163

23-1573/TN

2

2012,2(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn