期刊专题

10.3321/j.issn:1001-0505.2007.04.034

基于小波神经网络的期权定价模型

引用
Black-Scholes模型所要求的假设条件在真实的市场条件下往往不能满足.提出了一种新的应用小波神经网络进行预测的欧式期权定价模型.将期权按钱性进行分类, 以一种新的加权的隐含波动率作为神经网络的输入变量,通过小波神经网络模型、BP网络模型和Black-Scholes模型来预测香港恒指买权的价格.实证结果表明,将一种加权的隐含波动率作为输入变量的小波神经网络模型优于Black-Scholes模型和其他神经网络模型.因此该模型可以更有效地预测欧式期权价格.

期权定价、小波神经网络、Black-Scholes模型、隐含波动率

37

F830.9(金融、银行)

国家自然科学基金70501013

2007-09-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

716-720

暂无封面信息
查看本期封面目录

东南大学学报(自然科学版)

1001-0505

32-1178/N

37

2007,37(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn