期刊专题

10.3969/j.issn.1672-1586.2021.04.011

结合改进PSPNet与ConvCRF的遥感影像分割方法

引用
针对现有基于深度学习的遥感影像分割方法难以充分考虑像素之间关系,而全连接条件随机场(fully connected conditional random fields,FullCRF)后处理效率低下且难以训练的问题,提出了结合改进金字塔场景解析网络(pyramid scene parsing network,PSPNet)算法与卷积条件随机场(convolutional condition random fields,ConvCRF)的方法.首先,在PSPNet中采用更加密集连接的DenseNet网络,并在高低层特征融合部分将原有的连接CNN网络末端特征图方式改为连接第三个dense模块.其次,在改进PSPNet基础上,设计与ConvCRF的集成方法,通过引入两个损失函数,设计两步法训练方式,实现了集成模型的端对端训练.最后,进行某区域无人机遥感影像4类要素分割及马萨诸塞州航空遥感影像道路分割试验.结果表明,改进PSPNet在无人机影像分割试验中MIoU(mean intersection over union)提升0.25%,总体精度提升0.47%;结合ConvCRF处理模块后,MIoU可进一步提升0.94%,总体精度进一步提升0.47%,单幅图像计算时间仅增加79 ms,且精度优于FullCRF,时间开销仅为FullCRF的35%,在马萨诸塞州道路分割试验中,本方法较其他精度更优.

遥感影像;深度学习;语义分割;总体精度;全连接条件随机场;卷积条件随机场

28

P237.1(摄影测量学与测绘遥感)

2021-12-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

58-65

暂无封面信息
查看本期封面目录

地理信息世界

1672-1586

11-4969/P

28

2021,28(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn