10.3969/j.issn.1672-1586.2019.04.011
面向微博签到数据的城市社区结构挖掘
近年来,城市发展趋向区域化管理,为了得到贴近城市真实内部结构的区域划分方式,辅助城市规划决策,需要在以人为本的角度进行城市社区结构挖掘.基于2015年深圳市的微博签到数据,对现有城市社区结构挖掘研究中社区发现最小单元定义不合理、划分特征因子多为独立特征缺乏关联性等不足进行改良.经过有效数据筛选形成用户轨迹后,将Voronoi划分得到的泰森多边形作为社区发现的最小单元,保留划分对象重要程度的不同,并以此构建一张由特征签到POI点形成的城市内部交互网络.划分特征因子除了人群的主观迁徙外,还增加了空间邻近约束,通过REDCAP社区挖掘算法对构成的地理空间网络进行区域分割,确保了社区划分结构的完整性.最后选取模块度最大为0.5095时的划分结果,通过实地比对和POI类型分析,发现得到的7个子社区功能结构完整、且社区间差异明显,对于城市公共设施的完善和城市规划发展的区域划分方向具有重要参考意义.
微博签到、POI、社区发现、层次聚类
26
TP393.02(计算技术、计算机技术)
2019-09-11(万方平台首次上网日期,不代表论文的发表时间)
共6页
68-73