期刊专题

10.7500/AEPS20230426003

基于分层深度强化学习的分布式能源系统多能协同优化方法

引用
分布式能源系统的多能协同运行对于促进新能源的消纳具有重要意义.然而,分布式能源系统中源荷的不确定性以及异质能源网络的时空差异性,给多能协同优化问题带来巨大挑战.针对这一问题,提出了一种面向分布式能源系统的两阶段多能协同优化模型,通过采用长时间尺度控制和短时间尺度控制两阶段解耦决策方式,实现了对不同时间响应特性的复合空间进行序贯决策.然后,面对高维复合搜索空间和源荷不确定性因素,采用了深度强化学习无模型解决方案,并提出一种全新的分层深度强化学习算法进行求解.通过算例仿真验证了所提模型和求解方法的有效性和优越性.

分布式能源系统、新能源、多能协同、序贯决策、深度强化学习

48

U443.33;TP391;TP1

2024-01-18(万方平台首次上网日期,不代表论文的发表时间)

共10页

67-76

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

48

2024,48(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn