基于BLAP聚类和多粒度犹豫模糊集的售电套餐推荐方法
现有基于用户评价信息的售电套餐推荐方法因忽略了差异化用户评价信息的多样性,且仅考虑了用户擅长评价售电套餐所有属性的情形,给推荐结果带来较大偏差.为此,提出了一种基于双层邻近传播(BLAP)聚类和多粒度犹豫模糊语言评价集的售电套餐推荐方法.首先,提出了基于用户画像标签体系和BLAP聚类的样本用户集划分方法,以辨别用电特性相似的用户;然后,考虑多粒度犹豫模糊语言评价集和权重不完整信息,提出了样本用户集对售电套餐选择的模糊评价方法;接着,提出了基于样本用户集评价信息的新用户满意度评估方法和售电套餐的全排序推荐方法,以实现售电公司对售电套餐的精准推荐.最后,以中国某地区用户为对象进行算例分析,结果表明基于BLAP聚类和多粒度犹豫模糊集的售电套餐推荐方法能够帮助售电公司提高推荐质量,进而提升用户满意度,增强用户黏性.
售电套餐、售电公司、用户画像、双层邻近传播聚类、多粒度犹豫模糊集、满意度评估
47
TP391;F272.5;G206
浙江省自然科学基金资助项目LQ22E070009
2023-01-16(万方平台首次上网日期,不代表论文的发表时间)
共9页
96-104