期刊专题

10.7500/AEPS20210603006

基于爬坡特征和云模型的风电功率预测误差区间评估

引用
为了满足电力系统优化运行对预测误差区间评估结果越来越高的可靠性要求,改善传统的区间评估方法在发生小概率风电爬坡事件时较差的适应性,提出了一种基于爬坡特征分类和云模型的风电功率预测误差区间评估方法.通过对每类数据分别建立模型以提高不同爬坡类型下评估方法的适应性.首先,利用改进的旋转门算法识别爬坡后得到爬坡特征,并基于爬坡特征对预测误差进行分类,对上爬坡类误差和下爬坡类误差分别建立云模型,对非爬坡类误差采用K-means算法得到不同预测误差类型所对应的区间范围.然后,以风电功率和爬坡特征数据共同作为模型输入,以预测误差类型为输出,建立评估模型,从而得到风电功率预测误差评估区间.最后,利用Elia网站的风电数据进行算例分析.结果表明,所提方法的风电功率误差区间评估效果更优.

风电功率、预测误差、风电区间评估、爬坡特征、云模型、误差分类、改进的旋转门算法

46

TP391;O156.4;TM73

国家自然科学基金62076243

2022-06-10(万方平台首次上网日期,不代表论文的发表时间)

共10页

75-84

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

46

2022,46(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn