期刊专题

10.7500/AEPS20210222012

基于深度强化学习的多端背靠背柔性直流系统直流电压控制

引用
为了提高互联配电网多端背靠背柔性直流系统的直流电压控制精度,增强抗干扰能力,提出一种基于深度强化学习的直流电压控制方法,将深度学习神经网络与确定策略梯度融合,实现连续动作搜索,自适应调整电压控制策略.首先,建立多端背靠背柔性直流系统数学模型,分析直流电压控制的非线性和不确定性特征;然后,给出了基于深度强化学习的直流电压控制算法框架,设计了动作与状态空间、奖励函数、神经网络和学习流程;最后,通过仿真分析发现,相比传统比例-积分(PI)控制方法,所提方法具有更好的动静态性能,有效提高了直流电压的控制精度,减小了扰动下直流电压波动和功率超调,缩短了直流电压和功率的恢复稳定时间.

互联配电网;柔性直流系统;直流电压控制;深度强化学习;确定策略梯度;自适应调整

45

国家自然科学基金资助项目51707089

2021-10-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

155-162

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

45

2021,45(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn