期刊专题

10.7500/AEPS20200411002

基于Bagging异质集成学习的窃电检测

引用
针对传统窃电检测中单一分类方法的不足,提出一种基于Bagging异质集成学习的窃电检测方法.考虑不同个体学习器在数据集上的表现以及各学习器之间的多样性,构建多种个体学习器嵌入的Bagging异质集成学习的窃电检测模型,模型的个体学习器包含k最近邻、误差反向传播神经网络、梯度提升树和随机森林,通过引入改进加权投票策略将其输出进行结合.使用爱尔兰智能电表数据集对算法有效性进行验证.结果表明,与传统单一学习器和同质集成学习检测相比,基于Bagging异质集成学习的窃电检测方法的准确率、命中率、误检率等检测指标更好,灵敏性分析验证了基于Bagging异质集成学习的窃电检测方法的有效性.

窃电检测、Bagging、集成学习、个体学习器、多样性

45

国家自然科学基金资助项目51607104

2021-01-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

105-113

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

45

2021,45(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn