基于Bagging异质集成学习的窃电检测
针对传统窃电检测中单一分类方法的不足,提出一种基于Bagging异质集成学习的窃电检测方法.考虑不同个体学习器在数据集上的表现以及各学习器之间的多样性,构建多种个体学习器嵌入的Bagging异质集成学习的窃电检测模型,模型的个体学习器包含k最近邻、误差反向传播神经网络、梯度提升树和随机森林,通过引入改进加权投票策略将其输出进行结合.使用爱尔兰智能电表数据集对算法有效性进行验证.结果表明,与传统单一学习器和同质集成学习检测相比,基于Bagging异质集成学习的窃电检测方法的准确率、命中率、误检率等检测指标更好,灵敏性分析验证了基于Bagging异质集成学习的窃电检测方法的有效性.
窃电检测、Bagging、集成学习、个体学习器、多样性
45
国家自然科学基金资助项目51607104
2021-01-26(万方平台首次上网日期,不代表论文的发表时间)
共9页
105-113