期刊专题

10.7500/AEPS20170516002

基于多特征序列融合的负荷辨识方法

引用
针对当前利用低频采样实现非侵入式负荷辨识存在的准确率低的问题,提出了基于多特征序列融合的负荷辨识方法.该方法首先建立负荷存在可能性的整数规划模型,进行初辨识以降低负荷辨识的维度.然后,根据滑动窗口算法获得组合功率序列和原始功率序列,提取其统计特征和奇异值特征,进而利用概率神经网络获得隐马尔可夫模型的观测值序列.同时,利用隐马尔可夫模型对负荷序列信息进行融合,计算观测序列和组合功率序列之间的相似度,从而完成在低频采样下的负荷辨识,并获得各个家用负荷的耗电量.最后,通过单负荷辨识、多负荷辨识、不同采样率辨识和各居民用户负荷辨识的仿真实验,得到负荷准确率和辨识精度的平均值均在85%以上,证明了所提算法的合理性和即时性能够达到在低频采样下负荷的辨识要求.

负荷辨识、整数规划、概率神经网络、隐马尔可夫模型

41

This work is National Natural Science Foundation of China61273029;Fundamental Research Funds for the Central UniversitiesN160402003;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources No.LAPS17013.国家自然科学基金资助项目61273029;中央高校基本科研业务费专项资金资助项目N160402003;新能源电力系统国家重点实验室立项资助项目LAPS17013

2018-03-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

66-73

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

41

2017,41(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn