期刊专题

10.3321/j.issn:1000-1026.2009.19.008

一种恢复最优潮流可行性的实用方法

引用
最优潮流无解时,以往只能凭借经验和反复调试才能恢复其可行性.文中提出了一种最优潮流的扩展模型来恢复最优潮流的可行性.在等式约束和不等式约束中加入松弛变量,并在目标函数中加入相应的惩罚项,采用改进的原对偶内点法来求解.算例仿真的结果表明:当原问题可行时,该模型可以收敛到原问题的最优解;当前约束或者控制变量越界导致原问题无解时,可以自动到更大的可行域内寻优,快速得到近似解,并且可以明确指出导致原问题无解的关键约束,从计算结果中可以方便地得到调整的措施,即调整有功、无功补偿量或者安全约束指标.改进的算法在各种情况下都有很好的收敛性.与其他模型和方法的比较说明了该模型和算法的优越性.该方法可以在多个方面得到实际应用.

最优潮流、原对偶内点法、松弛变量、惩罚项

33

TM744(输配电工程、电力网及电力系统)

国家重点基础研究发展计划973计划资助项目2004CB217905.This work is supported by Special Fund of the National Basic Research Program of China 2004CB217905

2011-12-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

36-41,95

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统自动化

1000-1026

32-1180/TP

33

2009,33(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn