期刊专题

10.16535/j.cnki.dlhyxb.2021-082

基于主成分分析及GA-LM的水产养殖环境溶解氧和氨氮含量预测

引用
为了精准预测水产养殖过程中最重要的两个环境参数溶解氧和氨氮,针对预测模型需要解决的有效影响因子确定、预测算法和网络结构优化等问题,将Levenberg-Marquardt(LM)神经网络、遗传算法(genetic algorithm,GA)和主成分分析(PCA)算法相结合,提出一种基于GA-LM-PCA的水产养殖环境溶解氧和氨氮含量预测模型,即采用PCA确定影响因素,实现影响因素的去耦合降维,采用遗传算法对网络结构进行优化,确定合适的隐层节点数目和权值,采用LM训练神经网络,提高神经网络的收敛速度.为了验证GA-LM-PCA的预测效果,将GA-LM-PCA的预测效果与未用PCA方法的GA-LM预测模型进行了试验比较,并探讨了影响因素数量对预测效果的影响.结果表明:用GA-LM-PCA方法预测的溶解氧和氨氮值与实测值吻合较好,平均绝对误差和均方根误差分别为0.0047、1.8727×10-4(溶解氧)和0.0065、9.4287×10-4(氨氮),适用于影响因素数量较多的场合.研究表明,GA-LM-PCA是一种有效的水产养殖环境溶解氧和氨氮预测工具,尤其对于影响因素复杂繁多的非线性系统效果更好.

溶解氧;氨氮;水产养殖环境;遗传算法(GA);LM神经网络算法;主成分分析(PCA)

36

S967.4;TP183(水产养殖技术)

辽宁省科技重大专项计划项目;辽宁省教育厅科研项目

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

851-858

相关文献
评论
暂无封面信息
查看本期封面目录

大连海洋大学学报

2095-1388

21-1575/S

36

2021,36(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn