期刊专题

10.3969/j.ISSN.1672-0792.2022.07.006

基于混合模型的风电机组异常数据识别方法

引用
结合风电机组异常数据的分布特征,采用参数模型与非参数模型结合的算法对异常数据进行识别.首先,在水平功率方向将风电机组运行数据以一定间隔分层,采用非参数模型扩散核密度估计建立不同水平功率区间内运行数据的数字概率密度曲线.然后,采用参数模型混合威布尔分布拟合概率密度曲线,利用威布尔分布的模型参数来准确描述不同水平功率区间复杂异常数据整体分布特征.最后,采用平均置信区间法识别和剔除异常数据.以2台风电机组的复杂异常数据为实例进行验证,结果表明该方法能够克服单一参数模型或非参数模型的局限性,可实现对风电机组异常数据的有效识别.

风能发电、风电机组运行、异常数据识别、数据清洗、扩散核密度估计、混合威布尔分布

38

TM614(发电、发电厂)

国家自然科学基金62073136

2022-08-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

41-49

相关文献
评论
暂无封面信息
查看本期封面目录

电力科学与工程

1672-0792

13-1328/TK

38

2022,38(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn