期刊专题

10.3969/j.issn.1672-0792.2016.05.008

基于PSO-SVR和SPC的风电机组齿轮箱故障预警研究

引用
齿轮箱是风电机组的主要部件之一,主要功能是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速.由于风电机组的运行条件恶劣,复杂的工况要求齿轮箱具有极高的可靠性,齿轮箱故障率较高.为了减少风电齿轮箱严重故障的发生,利用基于粒子群(PSO)的支持向量回归方法(SVR)对风电机组齿轮箱进行预测建模,然后利用统计过程控制技术(SPC)对残差进行分析,根据中心极限定理设置残差预警阈值,当残差超出预警限之外时系统立即报警.实验证明,该方法对风电齿轮箱模型预测效果良好,可有效实现齿轮箱异常状态的预警.

齿轮箱、支持向量回归、粒子群、统计过程控制、故障预测

32

TM83(高电压技术)

河北省自然科学基金资助项目F2014502059

2016-07-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

43-48

相关文献
评论
暂无封面信息
查看本期封面目录

电力科学与工程

1672-0792

13-1328/TK

32

2016,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn